Connect with us

Press Releases

UH Professor Developing New Technology to Detect Lens Elasticity

The technology will combine Brillouin microscopy, Optical Coherence Tomography (OCT) and Optical Coherence Elastography (OCE).

mm

Published

on

(PRESS RELEASE) HOUSTON — A University of Houston biomedical researcher is developing new technology that will measure the stiffness of the lens in the eye, which is likely associated with presbyopia, or farsightedness, the inevitable and age-related loss of the ability to focus on nearby objects.

Presbyopia – which eventually impacts every human being – is linked to a stiffening of the crystalline lens. There are currently several investigational approaches for presbyopia treatment that rely on lens softening or lens replacement with softer materials. Drug-associated lens softening approaches are expected to have a transformative impact on the field because they are non-invasive and they preserve the anatomical relationship between the lens and other tissues involved in focusing, but there is a significant roadblock to developing these procedures.

These 18 Images Show Why CHROMA Modern Eyewear Eyecare Was Named America’s Finest Optical Retailer for 2022
Photo Gallery

These 18 Images Show Why CHROMA Modern Eyewear Eyecare Was Named America’s Finest Optical Retailer for 2022

That’s a Wrap from Vision Expo West 2022 in Las Vegas
Photo Gallery

That’s a Wrap from Vision Expo West 2022 in Las Vegas

Vision Expo West Takes Over Las Vegas Strip
Photo Gallery

Vision Expo West Takes Over Las Vegas Strip

“There is currently no method available to directly measure lens stiffness and thus assess the efficacy of lens softening procedures in vivo,” said Kirill Larin, professor of biomedical engineering. The National Eye Institute has awarded Larin $3 million to create a new technology capable of precise noninvasive and depth-resolved quantitative measurements of the lens mechanical properties in a clinical setting.

The technology will combine Brillouin microscopy, Optical Coherence Tomography (OCT) and Optical Coherence Elastography (OCE) – a new combination to be called BOE. The instrument will be used to generate the first age-dependent data on lens mechanical properties quantified in vivo as well as quantitatively assess therapeutic procedures aimed to restore the ability to focus.

“Our novel BOE technology can acquire absolute measurements of the lens stiffness gradient with the accuracy and precision required to detect both age-related changes and changes induced by lens softening treatments,” said Larin.

“The ability to quantify lens softening in vivo will have a major impact on preclinical and clinical testing, validation and optimization of lens softening procedures.”

Advertisement

Larin has assembled a multidisciplinary team with expertise in optical coherence tomography and elastography, Brillouin technology, biomechanical modeling, clinical ophthalmic instrumentation and crystalline lens physiology. The team includes Fabrice Manns, University of Miami; Giuliano Scarcelli, University of Maryland; and, Salavat Aglyamov, research assistant professor of mechanical engineering at UH.

SPONSORED VIDEO

Explore New Crizal® Sapphire™ HR lenses on Leonardo

Did you know there’s an online course on the new Crizal Sapphire HR lenses available now on Leonardo? With best-in-class learning content, including a wide range of ABO certified CE courses, Leonardo can take your practice’s optical knowledge to the next level. Visit leonardo.essilorluxottica.com today to learn about new Crizal Sapphire HR and take advantage of the 3-month free trial of this innovative online learning platform brought to you by EssilorLuxottica.

Promoted Headlines

Advertisement

Advertisement

Advertisement

Subscribe

INVISIONMAG.COM
BULLETINS

Get the most important news and business ideas for eyecare professionals every weekday from INVISION.

Instagram

Most Popular